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Abstract
We consider small symmetric clusters of magnetic atoms (spins) with
anisotropic exchange interaction between the atoms in a magnetic field at zero
temperature. The inclusion of the anisotropy leads to a wealth of different
phases as a function of the applied magnetic field. These are not phases in the
thermodynamic sense with critical properties but rather physical structures with
different arrangements of the spins and hence different symmetries. We study
the spatial symmetry of these phases, for the classical and quantum cases.
Results are presented mainly for three frustrated systems, the triangle, the
tetrahedron and the five-atom ring, which have many interesting features. In the
classical limit we obtain phase diagrams in which some of the phase changes
occur because of energy crossings and others due to energy bifurcations,
corresponding to ‘first-’ and ‘second-order’ changes. In the quantum case we
show how the symmetries of the states are related to the corresponding classical
symmetries.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In two recent papers we have studied small symmetric clusters of magnetic atoms with isotropic
antiferromagnetic exchange in a magnetic field. In the first of these papers [1] we looked at
clusters with sizes from eight (octahedral) to 19 (fcc) atoms. We observed phase changes in
the classical zero-temperature magnetization curve but we were not able to correlate these with
changes in the quantum ground states in any convincing manner. Note that we refer to ‘phase
changes’ although of course these are not thermodynamic phase changes but rather changes
between states of different symmetry at T = 0 as the applied magnetic field B is varied.

In the second paper [2] we looked mainly at smaller clusters (sizes two to eight atoms),
again with isotropic exchange. Here we were able to study two things. Firstly we studied the
quantum to classical transition as S → ∞ during which the steps of the quantum magnetization
curve become progressively smaller. In the limit one obtains the piecewise smooth classical
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magnetization curves. Secondly we studied the spatial symmetry of the quantum states and as a
result were able to characterize the symmetry of the classical configurations as the limit of these.
Typically we find that a given quantum state has a symmetry which can be described in terms
of the irreducible representations of the space group of the cluster. The classical symmetry is
usually lower (i.e. a combination of more irreducible representations), since several quantum
states with different symmetries contribute to the smooth classical curve.

The situation in the case of the three- and four-atom clusters is complicated by the presence
of additional symmetry which is ‘hidden’ as far as the space group is concerned but is clear
from the fact that the Hamiltonian in these cases can be factorized. The low-lying states, which
are the only ones relevant to the zero-temperature magnetization curve, can then be written
in terms of effective spins formed from linear combinations of two or more actual spins. The
effect of this is to introduce extra massive degeneracies into the low-lying energy levels when
the exchange is isotropic. A full treatment of the energy levels for the special case of a triangle
of S = 3/2 Cr atoms was given earlier by Bates and Jasper [3].

In this paper we focus mainly on three small frustrated clusters, the triangle, the tetrahedron
and the five-atom ring. The five-atom ring is the smallest non-trivial cluster for which no
factorization occurs. Most importantly we introduce anisotropy into the exchange. This has
the effect of causing phase changes as the magnetic field changes even for small clusters. We
shall study the symmetry of these different phases and the transitions between them. This
has enabled us to understand the symmetry of the classical states in terms of the irreducible
representations of the space group as well as the way in which these are formed from the
quantum states in the S → ∞ limit.

Small clusters of spins have become active topics of experimental and theoretical research
since the recent discoveries of magnetic molecular complexes. This work has been extensively
reviewed by Winpenny and Rawson [4, 5]. Large molecules of Fe8 and of Mn12 acetate type
have a large total spin, typically of the order of S = 10, and a large energy barrier against spin
rotation. These properties have made them ideal for studying quantum relaxation [6–9]. In
view of the problems addressed in this article, more interesting compounds are however those
molecular complexes in which there is no such energy barrier. An example of that kind of
molecule is the V15 polyoxovanadate [10]. In this molecule the 15 vanadium atoms with spin
S = 1/2 form a structure composed of a triangle sandwiched in between two hexagons. All
exchange interactions between spins are antiferromagnetic. Because of the relative strengths
of these interactions the low-energy magnetic excitations of the molecule can be described by
three spins S = 1/2 with antiferromagnetic coupling [11, 12]. The magnetization curve of this
molecule at low temperatures has stepwise structure similar to the triangle of S = 1/2 spins
studied below. The more detailed magnetic structure of the system only shows up at higher
energies, and has not been analysed experimentally. As similar magnetic molecules are likely
to be constructed in the near future, we believe that our methods will be useful in analysing
the magnetic properties of small clusters of spins with antiferromagnetic coupling.

2. Triangle of spin-S atoms

The Hamiltonian with X X Z -type anisotropic exchange and the magnetic field in the z-direction
is

H = Jz

3∑
i=1

sz
i sz

i+1 + Jx

3∑
i=1

(sx
i sx

i+1 + sy
i s y

i+1) − B
3∑

i=1

sz
i . (1)

For Jx = Jz(= J ) this Hamiltonian factorizes in the form

H = J

2
(t · t − 3S2) − Btz
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Figure 1. The T = 0 phase diagram of the classical triangle with Jz = 1 as a function of B and
Jx .

where t = s1 + s2 + s3. This was noted in our earlier paper and corresponds to a hidden
symmetry for this case, which results in massive degeneracy. The inclusion of the anisotropy
in equation (1) largely removes this degeneracy. We shall choose Jz = 1, allowing Jx to vary.

Classically we obtain the lowest energy for each Jz , Jx , B by starting with a random set
of orientations for the spins and then using a Powell method [16] to relax the system into
its lowest-energy (zero-temperature) configuration. We find five distinct regions which are
conveniently described in terms of the orientation angles θ, φ, given in the following table.

Region 1 Region 2 Region 3 Region 4 Region 5

Atom θ φ θ φ θ φ θ φ θ φ

1 θ1 0 0 — θ1 0 0 — θ1 0
2 θ1 π 0 — θ1 0 0 — θ1 2π/3
3 π — π — θ2 π 0 — θ1 4π/3

Since we are using the spin-space group [13] where different symmetry transformations
can be applied separately to the spin and space configurations we note that the energies are
invariant under two trivial sets of operations:

(i) an arbitrary uniform rotation of the spins about the z-axis and
(ii) any permutation of the atoms corresponding to an element of the space group C3v.

In this model the axis of symmetry applied to the spins in (i) can be chosen independently of
the axes of the triangle—although in real systems they would normally be coincident.

The phase diagram is shown in figure 1. The boundary between regions 1 and 2 is given
by B12 = S Jx and between regions 2 and 3 by

B23 = S/2

[
Jz − Jx +

√
4J 2

z + 4Jx Jz − 7J 2
x

]
.

All the boundaries between regions are examples of bifurcations in the energy versus B
curves and the values for the orientation angles are continuous across the boundaries. The
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Figure 2. Magnetization curve of the triangle for Jz = 1, Jx = 0.7 as a function of B , indicating
the different regions. The stepped curve is the corresponding quantum curve for S = 4.

only exception is the Jx = Jz boundary (for all B < 3S Jz) at which level crossing takes place.
This is also the boundary with the massive degeneracy.

The magnetizations in the five regions are given in the following table using m = M/S
and b = B/S. In region 3 the magnetization has only been found numerically.

Region Magnetization, m

1 [2b + (Jz − Jx)]/[Jz + Jx ]
2 1
4 3
5 3b/(2Jz + Jx)

Region 4 is the fully aligned region which exists for all B � S(Jx + 2Jz). Region 5 is
a fanlike structure occurring for Jx � Jz and B < S(Jx + 2Jz). Region 2 we refer to as the
plateau region because of the form of the magnetization curve. This magnetization plateau at
M = S is not related to the magnetization plateau discussed by Oshikawa et al [15] which is
due to collective excitations in a system with a large number of atoms. Rather it is a precursor
of the Ising stepped magnetization curve obtained for Jx = 0.

The magnetization curve for Jx = 0.7, Jz = 1.0 is shown in figure 2 which also shows
the quantum curve for S = 4 for comparison.

The classical symmetries are obtained in terms of the irreducible representations of the
space group C3v [14] as follows. In each case we determine which of the group operations
leave the configuration unchanged. No changes in spin orientation are allowed. This gives the
characters of the representation and hence from the character table we obtain the corresponding
combination of irreducible representations.

In region 4 all spins are parallel so the configuration is invariant under all group
operations and the representation is �1. In regions 1 and 5 all spins are oriented in different
directions so that under the operations of the space group only the identity leaves it invariant.
This corresponds to the regular representation �1 + �2 + 2�3. In regions 2 and 3 two spins are
parallel so the configuration is invariant under the identity and one of the three σv operations
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leading to the representation �1 +�3. Clearly regions 1 and 5 and regions 2 and 3 are physically
distinct but this would only lead to different representations if the spin-space group were used
rather than the space group.

Quantum mechanically we have obtained the lowest eigenstates for each value of M and
from these we can obtain the symmetries. The magnetization curves now consist of a series
of steps as states with different magnetizations and symmetries become lowest as a function
of B . An example is shown for the case Jz = 1, Jx = 0.7 and S = 4 in figure 2.

We find that region 4 is �1 as expected and in region 3 the steps in the magnetization
alternate between �1 and �3, consistent with the classical result. In region 1 we find that the
steps alternate between �1 and �2 for integer S, and are always �3 for integer + 1

2 . Taken
together, this combination is consistent with the classical result �1 + �2 + 2�3. In region 2 we
find �1 for integer S and �3 for integer + 1

2 , again consistent.
Although in this case consideration of the ground states of both the integer and integer

+ 1
2 together leads directly to the correct classical representation, this is not always true. The

classical limit is correctly obtained in the limit S → ∞. One should therefore look at all low-
lying states in this limit to determine which become degenerate with the ground state. Because
the states of different symmetry are ordered differently for the integer and integer + 1

2 it may
happen that all the states which become degenerate in the S → ∞ limit occur as ground states
of one or the other as here. However, we have observed other cases where some low-lying
states which become degenerate with the ground state in this limit do not occur as ground states
for finite S for either integer or integer + 1

2 , and the true classical representation is obtained
only when these states are included.

An example of this is in region 5 where we find that the steps form a sequence with
symmetries �1, �3, �3, �2, �3, �3, �1, �3, �3, �2, . . . for both integer and integer + 1

2 . This
would imply a representation of the form �1 + �2 + 4�4, which is clearly not the regular
representation. We believe that the explanation for this is that steps with symmetry �1 occur
because the lowest lying eigenstate has this symmetry but that there is another low-lying state
with symmetry �2. The classical representation is obtained in the limit S → ∞ and, provided
the low-lying state becomes degenerate with the lowest in this limit, the step would have
symmetry �1 + �2. A similar argument applies to the �2 steps which also become �1 + �2 in
this limit. The final result is the regular representation, as for the classical case.

3. Tetrahedron of spin-S atoms

The Hamiltonian with anisotropic exchange is

H = Jz[sz
1sz

2 + sz
1sz

3 + sz
1sz

4 + sz
2sz

3 + sz
2sz

4 + sz
3sz

4] + Jx [sx
1 sx

2 + sx
1 sx

3 + sx
1 sx

4 + sx
2 sx

3 + sx
2 sx

4 + sx
3 sx

4 ]

+ Jx [sy
1 sy

2 + sy
1 sy

3 + sy
1 sy

4 + sy
2 sy

3 + sy
2 sy

4 + sy
3 sy

4 ] + B
4∑

i=1

sz
i . (2)

For Jx = Jz(= J ) this Hamiltonian factorizes in the form

H = J

2
(t · t − 4S2) − Btz

where t = s1 + s2 + s3 + s4. This is a similar factorization to the triangle and corresponds to
a hidden symmetry for this case also, again resulting in massive degeneracy. Just as for the
triangle the inclusion of the anisotropy in equation (2) largely removes this degeneracy. Again
we take Jz = 1, allowing Jx to vary.
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Figure 3. The T = 0 phase diagram of the classical tetrahedron with Jz = 1 as a function of B
and Jx .

Classically we find seven distinct regions with orientation angles θ, φ shown in the
following table.

Region 1 Region 2 Region3 Region 4 Region 5 Region 6 Region 7

Atom θ φ θ φ θ φ θ φ θ φ θ φ θ φ

1 0 — 0 — θ1 0 0 — θ1 0 0 — θ1 0
2 0 — 0 — θ1 0 0 — θ1 0 0 — θ1 π

3 π — θ 0 θ2 0 0 — θ1 0 0 — θ1 φ1

4 π — −θ 0 θ3 0 π — θ2 0 0 — θ1 π + φ1

The value of φ1 in region 7 is arbitrary since the energy in this region is independent of
it. Region 6 is the fully aligned region which exists for all Jx , Jz provided B > S(3Jz + Jx).
The classical phase diagram is shown in figure 3. Along the boundary at Jx = Jz the massive
degeneracy referred to earlier occurs.

The crossover fields between the different regions are given in the following table using
the notation Bi j for the crossover field between regions i and j , and bi j = Bi j/S. b23 is only
known numerically and is not shown.

i, j bi j

1, 2 Jz − Jx

3, 4 Jz + Jx

4, 5 2Jz − Jx +
√

J 2
z + 2Jz Jx − 2J 2

x

5, 6 3Jz + Jx

7, 6 3Jz + Jx

All the boundaries are examples of energy bifurcations except the Jx = Jz boundary.
The magnetizations m = M/S of the different regions as a function of b = B/S are

given in the following table. For the regions which are not shown the magnetization would
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Figure 4. Magnetization curve of the tetrahedron for Jz = 1, Jx = 0.7 as a function of B ,
indicating the different regions. The stepped curve is the corresponding quantum curve for S = 6.

be obtained as the solution of a cubic or higher order equation and has only been found
numerically.

Region Magnetization, m

1 0
2 2(b + Jx − Jz)/(Jx + Jz)

4 2
6 4
7 4b/(3Jz + Jx)

The magnetization curve for Jx = 0.7, Jz = 1.0 is shown in figure 4, which also shows
the quantum result for S = 6.

The classical symmetries are obtained in terms of the irreducible representations of the
space group Td as follows. In region 6 all spins are parallel (aaaa) so the configuration is
invariant under all group operations and the representation is �1. In region 1 two pairs of spins
are parallel (aabb) with representation �1 + �3 + �5. In regions 2 and 3 only two of the four
spins are parallel (aabc) with representation �1 + �3 + �4 + 2�5. In regions 4 and 5 three spins
are parallel (aaab) with representation �1 + �5. Finally in region 7 all spins are in different
directions (abcd) giving the regular representation �1 +�2 + 2�3 + 3�4 + 3�5. Regions 2 and 3
and regions 4 and 5 would be distinguished if the spin space group were used.

We find that the symmetries of the lowest quantum eigenstates for each value of M are
consistent with the classical picture. However, in any region one obtains a subset of the classical
representations, e.g. in regions 2 and 3 for S = 6 we obtain alternating �1 and �4. The full
classical representation is usually obtained by considering both integer and integer + 1

2 values
of S. In some cases missing representations exist in low-lying states which become degenerate
with the lowest state as S → ∞.
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and Jx .

4. Five-atom ring of spin-S atoms

The Hamiltonian with anisotropic exchange is

H = Jz

5∑
i=1

sz
i sz

i+1 + Jx

5∑
i=1

(sx
i sx

i+1 + sy
i s y

i+1) − B
5∑

i=1

sz
i . (3)

We shall choose Jz = 1. Note that this Hamiltonian does not factorize.
Classically we find five distinct regions with orientation angles θ, φ shown in the following

table.

Region 1 Region 2 Region 3 Region 4 Region 5

Atom θ φ θ φ θ φ θ φ θ φ

1 θ1 0 0 — θ1 0 θ1 0 0 —
2 θ1 π 0 — θ1 0 θ1 4π/5 0 —
3 θ2 0 π — θ2 π θ1 8π/5 0 —
4 0 — 0 — θ3 0 θ1 12π/5 0 —
5 θ2 π π — θ2 π θ1 16π/5 0 —

We refer to region 2, which has constant magnetization M = S, as the ‘plateau’ region
because of the form of the magnetization curve in the cases in which it occurs. Region 4 is
referred to as the ‘fan’ because of the arrangement of the spins, and region 5, with constant
magnetization M = 5S, is the fully aligned region. The classical phase diagram is shown in
figures 5 and 6.

The three special points marked have coordinates (Jx , b) as follows.

P1 = (0.459 65, 1.79494) is the ‘triple point’ of regions 2, 3, 4.
P2 = (0.645 45, 1.527 88) is the ‘triple point’ of regions 1, 2, 4.
P3 = (2/3, 4/3) is the point at which region 2 has the largest possible value of Jx .
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Note that neither of the boundaries of region 3 (see figure 6) is an analytic continuation of the
line P1P2 nor is the line from P2 to (1, 0). Also note that there is no boundary at Jx = Jz and
no degeneracy along this line, associated with the fact that the Hamiltonian does not factorize.

The crossover fields for which analytic expressions have been found are given in the
following table.

i, j bi j

1, 2 1
2

[
(Jx + 2Jz) ± √

(Jx + 2Jz)(2Jz − 3Jx)
]

2, 4 2
5

[
X + 2

√
10Jz X − 6X2

]
4, 5 2X

where

X = Jz +
(1 +

√
5)

4
Jx . (4)

Note that the boundary between regions 1 and 2 requires the − sign from (0, 0) to P3 and
the + sign from P2 to P3. The boundary between regions 2 and 4 extends from P1 to P2. All
other boundaries can be expressed in terms of cubic or quadratic equations and have only been
obtained numerically.

In this case the boundaries at which the magnetization is discontinuous, namely B14,
B24 and B34, are examples of level crossings. All other boundaries are examples of level
bifurcations.

We show in figures 7–9 the magnetization M for Jz = 1 as a function of applied field B
for various values of Jx .

The magnetization curve in region 4 is a straight line m = 5b/2X . Magnetization curves in
regions 1 and 3 are complicated, involving solutions of quartic or cubic equations respectively.
For Jz � Jx only regions 4 and 5 occur, with the boundary given by B = 2SX .

From the observed arrangement of the spins in the cluster we can determine the symmetry
in terms of the irreducible representations of the space group of the cluster C5v. We shall use
the symmetry group C5v although an isomorphic permutation subgroup would strictly be more
appropriate. We consider the five regions separately.
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Figure 7. The T = 0 magnetization curve of the classical and S = 3 quantum five-atom ring as a
function of B for Jx = 0.75. The plateau, region 2, is not observed in this case.
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Figure 8. The T = 0 magnetization curve of the classical and S = 3 quantum five-atom ring as a
function of B for Jx = 0.6.

For region 1 the table of orientation angles shows that no spins are parallel. Consequently,
none of the operations of the space group leave the configuration unchanged except the identity,
leading to the regular representation �1 + �2 + 2�3 + 2�4. For region 2 three spins are parallel
and two are antiparallel. This is unchanged under the identity and one of the five σv operations.
The representation is �1 + �3 + �4. For region 3 there are two pairs of parallel spins and one
other. Again the identity and one σv operation (the one where the axis passes through the odd
spin) leave this unchanged, so again we obtain �1 + �3 + �4.

For region 4 none of the spins are parallel so, as for region 1, we obtain the regular
representation �1 + �2 + 2�3 + 2�4. As noted previously the operations of the space group
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Figure 9. The T = 0 magnetization curve of the classical and S = 3 quantum five-atom ring as a
function of B for Jx = 0.3. The enlargement shows the part of the curve corresponding to region 3.

leave the directions of the spins unchanged. Clearly a combination of a C5 operation with
a rotation of the spins by 4π/5 would leave the configuration unchanged, but this would
require use of the spin-space group rather than the space group considered here. We intend to
investigate spin rotations in later work.

Finally, for region 5 all spins are parallel. The configuration is invariant under all the
group operations so the representation is the identity representation �1.

These classical symmetries are summarized in the following table.

Region Symmetry

1 �1 + �2 + 2�3 + 2�4

2 �1 + �3 + �4

3 �1 + �3 + �4

4 �1 + �2 + 2�3 + 2�4

5 �1

Jx M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.75 �2 �1 �2 �1 �4 �2 �4 �3 �3 �4 �2 �4 �3 �3 �4 �1

0.6 �2 �1 �2 �1 �3 �4 �3 �3 �4 �1 �4 �3 �3 �4 �1

0.3 �2 �1 �2 �1 �1 �4 �3 �3 �4 �1

The quantum mechanical magnetization curves for S = 3 are also shown in figures 7–9.
As can be seen the quantum magnetization curves consist of a series of steps of height 1/S or
some integer multiple of this. Apart from this discreteness the quantum curves are similar to
the classical ones, reflecting the fact that S = 3 is already fairly large.

The irreducible representations of the states corresponding to each horizontal part of the
curve are given in the following table. A blank indicates that the magnetization with that value
does not occur.
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Again for each region we find that the representations of the lowest quantum states are a
subset of the classical representations. Just as for the triangle and tetrahedron the full classical
representation is obtained by considering both integer and integer + 1

2 spins and considering
low-lying states which become degenerate with the lowest state in the limit S → ∞. Our
speculation in the earlier paper [2] that the pattern in region 4 is of period 10 we now believe to
be incorrect, the correct pattern being of period 5, corresponding to the regular representation.

Note that region 3 is so narrow as a function of B that we cannot obtain meaningful results
for the quantum case.

5. Other clusters

In this paper we have concentrated on small symmetric clusters in which the interaction is
frustrated, i.e. nearest-neighbour paths of odd length exist. We have also looked at unfrustrated
clusters, e.g. a pair of atoms and rings of even numbers of atoms. The behaviour for all of
these is very similar to that of a pair of atoms. In the lowest states alternate atoms are always
parallel and effectively act as a single spin. The anisotropic exchange merely introduces a
single step in the magnetization curve at low field for Jx < Jz , and it is continuous if Jx > Jz .
An octahedron behaves very much like a triangle since opposite spins are always parallel and
behave as a single spin in the lowest states.

The extension of these ideas, including anisotropy, to the larger clusters considered in [1]
and to models of the more complicated structures found experimentally is straightforward
although more lengthy and is being studied in a few of the more interesting cases.

6. Conclusion

The inclusion of anisotropy in the exchange interaction has had two effects. One is to make
the T = 0 phase structures much more complicated and interesting. The other is that the
extra detailed information has enabled us to establish clearly the symmetry properties of the
classical clusters in terms of the irreducible representations of the space groups. Also we have
seen how the quantum systems typically have steps of higher symmetry but overall tend to the
classical result at large S, as expected.

However, we still do not have a complete description of the symmetry since the space group
only distinguishes between spins with different orientations. It does not take into account the
fact that the spin directions may be related. For example, for the five-atom ring, in region 4
the spins are all different but are related by a rotation about the z-axis of 4π/5. Also regions
2 and 3 have the same space group symmetry but clearly have different spin symmetries.

Some further information can be obtained by considering the ‘magnetic group’ where the
space and spin components are transformed by the same operations. It therefore involves only
the intersection of the space group and spin groups, which in turn depends on the direction of
the field and axis of anisotropy. If this is taken perpendicular to the plane of the triangle or
pentagon the group is C3 or C5 respectively. Reducing the spin-space product representations
correctly predicts that completely invariant spin structures like the fans should occur as found
in region 5 of the triangle. The predictions for other regions are less specific but consistent
with the classical structures. Further study of these is planned.
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